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MODEL OF A TURBULENT BOUNDARY LAYER

WITH EXPLICIT IDENTIFICATION OF THE COHERENT

GENERATION STRUCTURE

UDC 532.517.4:533.9V. V. Bogolepov,1 V. A. Zharov,1

I. I. Lipatov,1 and Yu. I. Khlopkov2

Using the method of moments in the space of wavenumbers, a class of models of a developed turbulent
flow of an incompressible fluid in a flat-plate boundary layer is proposed. The models are based on
an analysis of the Navier–Stokes equations that describe the behavior of dynamic coherent structures
associated with vorticity generation and also the behavior of the stochastic component. A continuum
analog of dynamic equations for a coherent structure is given in an explicit form. In the general
case, the stochastic component should satisfy a system of equations of the kinetic type, which reduces
to one equation under certain assumptions. It is also shown that the presence of coherent structures
leads to generalization of the notion of statistical homogeneity.

Introduction. The difficulties in describing turbulent motion of a fluid is caused, among other reasons,
by the fact that the spectrum of fluctuations is continuous. Two methods are currently used to describe turbulent
motion of a fluid. In one method proposed by Boussinesq [1] and Prandtl [2], a linear relationship is established
between the stress tensor and strain-rate tensor, and the mixing-length theory is used for the proportionality
coefficient. The spectrum continuity is associated with the dependence of the mixing length on coordinates (for
instance, the mixing length in the boundary layer is proportional to the distance from the wall). Formulation of the
problem, for example, about the boundary layer is essentially stationary; in addition, this form of the stress tensor
is within the framework of physical boundary conditions.

The other method for describing turbulent motion was proposed by Smagorinsky [3] (see also [4]). In this
formulation, the problem of a turbulent flow around a body is solved numerically. In accordance with the turbulent
flow structure used, the grid of the numerical scheme is chosen such that the wavenumber based on the grid size is
within the inertial region. Then, all quantities that have the size of the grid cell or smaller can be averaged, based on
the known results for uniform and isotropic turbulence, which leads to an effective (so-called subgrid) stress tensor
with a certain (according to Smagorinsky, linear) relationship with the strain-rate tensor. It should be noted that
the formulation of the problem is nonstationary for the long-wave part of the spectrum. The Reynolds equations are
used as initial ones, and their solution is supplemented by the operation of filtration of the low-frequency part. Thus,
this formulation is actually related to identification of the long-wave component of motion, i.e., it is an asymptotic
solution. However, problem formulation includes inconsistency from the viewpoint of asymptotic methods.

The model with the linear relationship of the stress tensor does not describe some physical effects that are
definitely established at the moment [5]: reverse flux of energy over the spectrum, anisotropy of the stress tensor,
and the presence of coherent structures. Advanced methods [4] allow one to obtain a more complicated, nonlinear,
relationship between the stress tensor and the strain-rate tensor. The physical content of the theory is refined, but
additional difficulties are involved: the stress tensor contains derivatives that increase the order of initial equations,
which requires introduction of additional boundary conditions.
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The description of the short-wave part of the spectrum also involves some uncertainties. Advanced methods
for studying turbulent flows operate with some random forces whose spectrum is set beforehand. Physically, however,
this force is associated with thermal fluctuations in aninhomogeneous gas flow [6]. The problem of determining the
characteristics of such fluctuations has not been solved yet even in the linear case in the boundary layer. Moreover,
there are two approaches to solving this problem, which may be called the Langevinian (stochastic) and Liouvillian
(dynamic) approaches.

Nevertheless, in formulation of the problem of turbulent fluctuations, the fluctuations, despite their small
amplitude, are a short-wave asymptotic solution and, in a certain sense, are boundary conditions for the limiting
transition to high wavenumbers.

In the problem of uniform and isotropic turbulence, the long-wave component (coherent structure) is set
artificially. Physically, a coherent structure in a turbulent boundary layer is a certain process of vorticity generation
[7, 8] described by a certain system of equations or a particular relation for the velocity-field components, which is
the boundary condition for low wavenumbers.

Thus, we believe that a correct solution of the problem of turbulent fluctuations requires the knowledge
of the long-wave (coherent structure) and short-wave components of turbulent fluctuations. The solution in the
interval between high and low wavenumbers should satisfy these boundary conditions. Using the advanced method
of analysis of such systems (for instance, the method of the recursive renormalization group [4]) one can try to
solve the problem completely if these two boundary conditions are available. Nevertheless, neither the long-wave
nor, moreover, the short-wave asymptotic solutions are currently known. It seems that a certain formulation of the
problem, if possible at all, should be eclectic.

In the present paper, we made an attempt to determine the coherent component in a turbulent boundary
layer on a flat plate using the method of moments [9].

1. Formulation of the Problem. We consider the possibility of constructing a certain set of models
for a turbulent flow field in the boundary layer in a low-mode [10] approximation (in the simplest case, one-mode
approximation). One of the special features of the turbulent boundary layer is the presence of a small parameter ε
equal in order of magnitude to the square root of the dimensionless growth rate of the Tollmien–Schlichting waves (in
this case, the Reynolds number, which is high by definition, is bounded by the relation ε2R� 1). The calculations
of Dodonov et al. [11] show that all the modes of the Orr–Sommerfeld equation are stable on the velocity profile of
the turbulent boundary layer. Terms of the third order of amplitude can change this situation due to addition of a
generation term proportional to the integral intensity of fluctuations into the equations for fluctuations. However,
the bursting observed in the experiment (periodic dynamic process of vorticity generation near the wall), low modes
of the field of turbulent fluctuations found in calculations, which allow three-wave resonance, and also physical
considerations (the presence of a mechanism of energy transfer from the mean flow to turbulent fluctuations)
indicate that generation of energy fluctuations is most probably performed due to the coherent structure, which
itself is a nonstationary vortex structure.

Thus, we consider a variant of the boundary-layer description, which contains nonstationary dynamic coher-
ent structures in addition to stochastic fluctuations. We use the method of moments in the space of wavenumbers [9].
The method of many scales is used to solve the thus-obtained equations.

The velocity field is divided into two components: mean-time and fluctuating. The equations for the coherent
component are separated from the equations for random fluctuations in an explicit form due to the three-wave
resonance of the Tollmien–Schlichting waves of the discrete spectrum, i.e., finally we have triple decomposition [8]
of the velocity field of the turbulent flow. For the incoherent component, in the general case, we obtain a system of
kinetic equations, which can be reduced to one equation under certain assumptions.

Following [10], we consider a developed turbulent boundary layer (Fig. 1). The initial equations that are
assumed to describe the nonstationary flow field (Navier–Stokes equations) can be decomposed into the equations
for the mean field U , V (in this paper, in the boundary-layer approximation) and the fluctuating field:

u = U + εu′, v = ε2V + εv′, w = εw′.

The equations for fluctuations are reduced to a system, which includes the Orr–Sommerfeld equation for the vertical
component of velocity and the Squire equation for the vertical component of vorticity [12]. Since decomposition in
eigenfunctions of the linear parts of these equations possesses completeness [13], the solution of the problem can be
represented as series in eigenfunctions.
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Fig. 1. Spatial configuration of the flow field in the boundary layer (the laminar and
turbulent boundary layers are denoted as LBL and TBL, respectively).

2. Equations for Amplitudes in the One-Mode Approximation. We expand the vertical components
of velocity and vorticity in eigenfunctions of the Orr–Sommerfeld and Squire equations, respectively:

v̂k(y) =
N∑
n=0

A
(n)
k ϕ

(n)
k (y) +

∞∫
−∞

A
(µ)
k ϕ

(µ)
k (y) dµ, η̂k(y) =

N∑
n=0

B
(n)
k ψ

(n)
k (y) +

∞∫
−∞

B
(µ)
k ψ

(µ)
k (y) dµ.

Here v̂k and η̂k are the Fourier images of the vertical components of velocity and vorticity, summation is performed
by modes (eigenfunctions of the Orr–Sommerfeld and Squire operators) of the discrete spectrum, and integration is
performed by modes of the continuous spectrum. In the one-mode approximation, we obtain the following system
(for simplicity, we consider only one unstable mode of the discrete spectrum, since modes of higher orders have
large decrements):

v̂k(y) = Akϕ
(0)
k (y) + . . . , η̂k(y) = Bkψ

(0)
k (y) + . . . ,

ûk(y) =
i

k2

(
α
dϕ

(0)
k (y)
dy

Ak − βψ(0)
k (y)Bk

)
+ . . . ,

ŵk(y) =
i

k2

(
β
dϕ

(0)
k (y)
dy

Ak + αψ
(0)
k (y)Bk

)
+ . . . .

After substitution of the Tollmien–Schlichting wave frequencies

Ak = Āk exp (−iRe [ω(0)
OS ]t), Bk = B̄k exp (−iRe [ω(0)

OS ]t),

the equations for the amplitudes Āk and B̄k acquire the following form:

− ∂

∂t
Āk + ε2 Im [ω(0)

OS(k)]Ak = ε

∫
H̄

(1)
kk1k2

Āk1Āk2 dk1 + ε

∫
H̄

(2)
kk1k2

Āk1B̄k2 dk1

+ ε

∫
H̄

(3)
kk1k2

B̄k1B̄k2 dk1 − ε2h
(1)
k Āk − ε2h

(2)
k B̄k; (2.1)

∂

∂t
B̄k = ε

∫
Ḡ

(1)
kk1k2

Āk1Āk2 dk1 + ε

∫
Ḡ

(2)
kk1k2

Āk1B̄k2 dk1 + ε

∫
Ḡ

(3)
kk1k2

B̄k1B̄k2 dk1

− ε2g
(1)
k Āk − ε2g

(2)
k B̄k − iβNS

(
ψ

(0)
k ,

dϕ
(0)
k

dy

)
Āk + i(Re [ω(0)

OS(k)]− ω(0)
S (k))B̄k; (2.2)

H̄
(i)
kk1k2

= H
(i)
kk1k2

exp [iRe (ω(0)
OS(k)− ω(0)

OS(k1)− ω(0)
OS(k2))t],

Ḡ
(i)
kk1k2

= G
(i)
kk1k2

exp [iRe (ω(0)
OS(k)− ω(0)

OS(k1)− ω(0)
OS(k2))t].

Here k2 = k−k1, ε = d/L, d is the momentum-loss length, L is the characteristic longitudinal scale, the quantities

H
(i)
kk1k2

and G
(i)
kk1k2

are symmetric in the case of the permutation k1 ↔ k2, and NS(f, g) =

∞∫
0

f(y)g(y) dy.
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3. Equations for Amplitudes with Accuracy to O(ε2). Assuming that the decrement of the lowest
mode of the Squire equation is high, i.e., this mode is continuously “adapted” to the Tollmien–Schlichting mode,
we can obtain the amplitude of the vertical component of vorticity in the form

B̄k =
βNS(ψ(0)

k , dϕ
(0)
k /dy)Āk

Re(ω(0)
OS(k))− ω(0)

S (k)
− ε

i(Re(ω(0)
OS(k))− ω(0)

S (k))

×
(∫

Ḡ
(1)
kk1k2

Āk1Āk2 dk1 +
∫
Ḡ

(2)
kk1k2

β2NS(ψ(0)
k2
, dϕ

(0)
k2
/dy)

Re (ω(0)
OS(k2))− ω(0)

S (k2)
Āk1 Āk2 dk1

+
∫
Ḡ

(3)
kk1k2

β1NS(ψ(0)
k1
, dϕ

(0)
k1
/dy)

Re (ω(0)
OS(k1))− ω(0)

S (k1)

β2NS(ψ(0)
k2
, dϕ

(0)
k2
/dy)

Re (ω(0)
OS(k2))− ω(0)

S (k2)
Āk1Āk2 dk1

)
+O(ε2) (k2 = k − k1)

or, in a shorter form,

B̄k = bkĀk − ε
∫
Gkk1k2Āk1Āk2dk1 +O(ε2), bk =

βNS(ψ(0)
k , dϕ

(0)
k /dy)

Re (ω(0)
OS(k))− ω(0)

S (k)
,

(3.1)

Gkk1k2 =
Ḡ

(1)
kk1k2

i(Re (ω(0)
OS(k))− ω(0)

S (k))
+

Ḡ
(2)
kk1k2

i(Re (ω(0)
OS(k))− ω(0)

S (k))

β2NS(ψ(0)
k2
, dϕ

(0)
k2
/dy)

Re (ω(0)
OS(k2))− ω(0)

S (k2)

+
Ḡ

(3)
kk1k2

i(Re (ω(0)
OS(k))− ω(0)

S (k))

β1NS(ψ(0)
k1
, dϕ

(0)
k1
/dy)

Re (ω(0)
OS(k1))− ω(0)

S (k1)

β2NS(ψ(0)
k2
, dϕ

(0)
k2
/dy)

Re (ω(0)
OS(k2))− ω(0)

S (k2)
(k2 = k − k1).

The values of B̄k from (3.1) can be substituted into Eq. (2.1) for Āk. Finally, we obtain

−∂Āk
∂t

+ ε2 Im (ω̄(0)
OS(k))Āk = ε

∫
Hkk1k2Āk1Āk−k1 dk1 − ε2

∫
Fkk1k2Āk1Āk2Āk−k1−k2 dk1 dk2 − ε2hkĀk,

ε2 = max
k

[Im (ω(0)
OS(k))] = d/L, Im (ω̄(0)

OS(k)) = Im (ω(0)
OS(k))/max

k
[Im (ω(0)

OS(k))].

4. Separation of Fluctuations into Coherent and Incoherent Components. After the above
transformations for the amplitudes of the Tollmien–Schlichting waves, we obtain the following equation:

∂Āk
∂t

= −ε
∫
Hkk1k2Āk1Āk−k1 dk1 + ε2

(
ΩkĀk +

∫
Fkk1k2Āk1Āk2Āk−k1−k2 dk1 dk2

)
,

Ωk = Im (ω̄(0)
OS(k)) + hk.

We express Āk in the form

Āk = Ack +A′k, 〈Ak〉 = Ack, 〈A′k〉 = 0

(i.e., divide into the coherent and incoherent components); the broken brackets denote averaging over random phases
of fluctuations. We express Āk1Āk2 and Āk1Āk2Āk3 through Ack and A′k:

Āk1Āk2 = Ack1
Ack2

+Ack1
A′k2

+A′k1
Ack2

+A′k1
A′k2

,
(4.1)

Āk1Āk2Āk3 = Ack1
Ack2

Ack3
+Ack1

A′k2
Ack3

+A′k1
Ack2

Ack3
+Ack1

Ack2
A′k3

+A′k1
A′k2

Ack3
+Ack1

A′k2
A′k3

+A′k1
Ack2

A′k3
+A′k1

A′k2
A′k3

.

We average the equation for fluctuations over an ensemble of random phases. For the coherent component, with
allowance for Eq. (4.1), we obtain
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∂Ack
∂t

= −ε
∫
Hkk1k2(Ack1

Ack2=k−k1
+ 〈A′k1

A′k2
〉) dk1

+ ε2
(

ΩkAck +
∫
Fkk1k2(Ack1

Ack2
Ack3=k−k1−k2

+ 〈A′k1
A′k2
〉Ack3

+Ack1
〈A′k2

A′k3
〉

+Ack2
〈A′k1

A′k3
〉+ 〈A′k1

A′k2
A′k3
〉) dk1 dk2

)
. (4.2)

For the incoherent component of the amplitude A′k, we have

∂A′k
∂t

= −ε
∫
Hkk1k2(Ack1

A′k2=k−k1
+A′k1

Ack2
+A′k1

A′k2
− 〈A′k1

A′k2
〉) dk1

+ ε2
(

ΩkA′k +
∫
Fkk1k2(Ack1

A′k2
Ack3=k−k1−k2

+A′k1
Ack2

Ack3
+Ack1

Ack2
A′k3

+ (A′k1
A′k2
− 〈A′k1

A′k2
〉)Ack3

+Ack1
(A′k2

A′k3
− 〈A′k2

A′k3
〉) +Ack2

(A′k1
A′k3
− 〈A′k1

A′k3
〉)

+A′k1
A′k2

A′k3
− 〈A′k1

A′k2
A′k3
〉) dk1 dk2

)
. (4.3)

5. Moments of the Random Component in the Homogeneous Case. For the ensemble-averaged
product of amplitudes of random fields in the homogeneous case, we obtain

〈A′k1
A′k2
〉 = Γ2(k1)δ(k1 + k2), 〈A′k1

A′k2
A′k3
〉 = εΓ3(k1,k2)δ(k1 + k2 + k3),

〈A′k1
A′k2

A′k3
A′k4
〉 = Γ2(k1)Γ2(k3)δ(k1 + k2)δ(k3 + k4) + Γ2(k1)Γ2(k2)δ(k1 + k3)δ(k2 + k4)

+ Γ2(k1)Γ2(k2)δ(k1 + k4)δ(k2 + k3) + εΓ4(k1,k2,k3)δ(k1 + k2 + k3 + k4), etc.

Equation (4.2) for the coherent component takes the form

∂Ac
k

∂t
= −ε

∫
Hkk1k2=k−k1A

c
k1
Ack2

dk1

+ ε2
(

Ωk +
∫

(Fkk1−k1 + Fkkk1 + Fkk1k)Γ2(k1) dk1

)
Ac
k

+ ε2

∫
Fkk1k2A

c
k1
Ack2

Ack3=k−k1−k2
dk1 dk2. (5.1)

The equations for the second- and third-order moments for stochastic fluctuations, which satisfy Eq. (4.3), are
written as

∂Γ2(p)δ(p+ q)
∂t

= −ε2δ(p+ q)
∫

(H−p,k1,−p−k1Γ3(p,k1) +Hp,k1,p−k1Γ3(−p,k1)) dk1

− ε((Hq,q+p,p +Hq,−p,q+p)Γ2(p) + (Hp,q+p,q +Hp,−q,q+p)Γ2(q))Acq+p

+ ε2
(

2ΩpΓ2(p)δ(p+ q) + δ(p+ q)
∫

((Fppk1 + Fpk1p + Fpk1−k1)Γ2(−p)Γ2(k1)

+ (F−q,−q,k1 + F−q,k1,−q + F−q,k1,−k1)Γ2(p)Γ2(k1)) dk1

)
+ o(ε2); (5.2)

∂Γ3(p, q)
∂t

= −(Hp,−q,p+q +Hp,p+q,−q)Γ2(q)Γ2(−p− q)

− (Hq,p+q,−p +Hq,−p,q+p)Γ2(−p− q)Γ2(p)

− (H−p−q,−p,−q +H−p−q,−q,−p)Γ2(p)Γ2(q) +O(ε). (5.3)

In the rigorous sense, the expressions for the correlations require certain generalization, since the term
proportional to the amplitude of coherent fluctuations in equations for the stochastic component, in the simplest
case, may contain several δ functions corresponding to a discrete set of wave vectors in three-wave resonance.
Nevertheless, assuming that these wave vectors are located near the origin of the space of wavenumbers and assuming,
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in a certain approximation, that the difference in wave vectors is insignificant for the stochastic component, we may
consider them as exact. As in [10], we obtain equations of the kinetic type for the stochastic component.

Taking into account that the system contains a small parameter, following [9], we expand the sought quan-
tities into series in ε:

Ack = A
c(0)
k + εA

c(1)
k + ε2A

c(1)
k + o(ε2), Γ2(k) = Γ(0)

2 (k) + εΓ(1)
2 (k) +O(ε2),

Γ3(k,k1) = Γ(0)
3 (k,k1) + εΓ(1)

3 (k,k1) +O(ε2), Γ4(k,k1,k2) = Γ(0)
4 (k,k1,k2) +O(ε),

(5.4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ o(ε2).

Substituting expansions (5.4) into system (5.1)–(5.3), we find that the amplitudes of the coherent structure
are independent of t0, and the function Γ2[k] is independent of t0 and t1. Elimination of secular terms yields the
following equations:

— dynamic equation for the coherent part

∂A
c(0)
k

∂t1
= lim
t0→∞

1
t0

t0∫
0

Rdt0 (5.5)

[R is the right side of the equation for the amplitudes Ac(0)
k ];

— equation of the kinetic type for the incoherent part

∂Γ(0)
2 (p)
∂t2

= lim
t1→∞

1
t1

t1∫
0

lim
t0→∞

1
t0

t0∫
0

R1 dt0 dt1

(R1 is the right side of the equation for Γ(0)
2 (p)).

In the equation for the incoherent component, one should take into account the mean part of the nonsta-
tionary system of equations that describe the coherent component in the scale t1.

6. Some Possible Solutions of the System for the Coherent Component and Stochastic Fluc-
tuations. For the three-wave resonance, in the simplest case, we have

Ack = bδ(k) + (a1δ(k − k(0)
1 ) + a2δ(k − k(0)

2 ) + a3δ(k − k(0)
3 ) + c.c.),

where c.c. is the sum of complex-conjugate terms, k(0)
1 , k(0)

2 , k(0)
3 is one possible set of vectors that satisfy the

three-wave resonance equations (see, e.g., [9]).
A numerical investigation yields the following pattern of the three-wave resonance for one of the least decaying

modes of the Tollmien–Schlichting waves for the velocity profile in the turbulent boundary layer [11] (see Fig. 2,
where α and β are the longitudinal and transverse components of the wave vector, respectively.)

The vectors are chosen to satisfy the equality k1 + k2 = k, and the ends of the vectors should lie on the
resonance curves determined by the vector k. In this case, Eqs. (5.5) for the amplitudes of the coherent component
can be represented as

da1

dt
= ε[a2a3(H

k
(0)
1 k

(0)
2 k

(0)
3

+H
k

(0)
1 k

(0)
3 k

(0)
2

)] + ε2(Q1),

da2

dt
= ε[a1a

∗
3(H

k
(0)
2 k

(0)
1 −k

(0)
3

+H
k

(0)
2 −k

(0)
3 k

(0)
1

)] + ε2(Q2),

da3

dt
= ε[a1a

∗
2(H

k
(0)
3 k

(0)
1 −k

(0)
2

+H
k

(0)
3 −k

(0)
2 k

(0)
1

)] + ε2(Q3),

where Qi (i = 1, 2, 3) is the set of linear and cubic terms with respect to the amplitude; the superscript asterisk
denotes complex conjugation.

7. Continuum Analog of Equations for the Three-Wave Resonance Amplitudes. An infinite
number of pairs of wave vectors satisfy the condition of three-wave resonance simultaneously; therefore, we consider
all these pairs. The solution Ack can be sought in the form of an infinite sum of δ functions, as was done in Sec. 6.
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Fig. 2. Three-wave resonance on the profile of the turbulent boundary layer for one of the least
decaying modes of the Tollmien–Schlichting waves.

This allows one to obtain equations for the amplitudes of pairs of wave vectors, which are continuous functions of
the point on the resonance curve. Finally, we obtain integrodifferential equations of the form

∂α1

∂t
= ε

∫
L

α2(l)α3(l)h1(l) dl + . . . ,
∂α2(l)
∂t

= εα1α
∗
3(l)h2(l) + . . . ,

∂α3(l)
∂t

= εα1α
∗
2(l)h3(l) + . . . ,

where l is the parameter along the resonance curve L, hi(l) (i = 1, 2, 3) are certain combinations of matrix elements,
and αi(l) (i = 1, 2, 3) are the amplitudes of waves in the state of three-wave resonance.

8. Correlation Function. In the general case, the correlation functions should also be sought in the form
of sums of δ functions (it follows from the fact that the right and left sides of equations for correlation functions
should have the corresponding elements). Then, in the presence of a coherent structure, we have

〈A′k1
A′k2
〉 =

∑
i

Γ(i)
2 (k1)δ(k1 + k2 − k(0)

i ),

〈A′k1
A′k2

A′k3
〉 = ε

∑
i

Γ(i)
3 (k1,k2)δ(k1 + k2 + k3 − k(0)

i ),

〈A′k1
A′k2

A′k3
A′k4
〉 =

∑
i,j

Γ(i)
2 (k1)Γ(j)

2 (k3)δ(k1 + k2 − k(0)
i )δ(k3 + k4 − k(0)

j )

+
∑
i,j

Γ(i)
2 (k1)Γ(j)

2 (k2)δ(k1 + k3 − k(0)
i )δ(k2 + k4 − k(0)

j )

+
∑
i,j

Γ(i)
2 (k1)Γ(j)

2 (k2)δ(k1 + k4 − k(0)
i )δ(k2 + k3 − k(0)

j ) + ε
∑
i

Γ(i)
4 (k1,k2,k3)δ(k1 + k2 + k3 + k4 − k(0)

i ).

Hence, the two-point spatial correlator acquires the form

〈A′(r1)A′(r2)〉 =
〈∫∫

A′(k1) eik1r1 dk1A
′(k2) eik2r2 dk2

〉
=
∫∫
〈A′(k1)A′(k2)〉 eik1r1 eik2r2 dk1 dk2

=
∫∫ ∑

i

Γ(i)(k1)δ(k1 + k2 − k(0)
i ) eik1r1 eik2r2 dk1 dk2 =

∫ (∑
i

Γ(i)(k1) eik
(0)
i r2

)
eik1(r1−r2) dk1.

This expression is a natural generalization of spatial homogeneity in the presence of coherent structures. As it could
be expected, in the case of small k(0)

i , the expression reduces to an ordinary homogeneous correlator. For large
values of r2, however, the arguments of the expression ek

(0)
i r2 are not small. Therefore, in the general case, the

correlator is either a periodic function in the space or differs from zero in a finite region of the space.
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Thus, the presence of internal resonance in the turbulent boundary layer, even in the case of excitation of
an infinite number of degrees of freedom, allows one to reveal some part of the field of fluctuations, which may
be considered as a dynamic coherent component. It should be noted that, in the general case, this structure has
a continuous spectrum due to the multiple three-wave resonance, i.e., possibility of simultaneous resonances of an
infinite set of wave triads with wave vectors that satisfy the condition of three-wave resonance. Because of that, it
seems to be impossible to identify this component on the background of the field of fluctuations.

The presence of the coherent structure leads to natural generalization of the notion of statistical homogeneity;
as a result, the two-point correlator of the field of fluctuations becomes a periodic function of spatial coordinates.
Note, the method of moments yields equations for the stochastic component, which are more generic than the
kinetic equation in the three-wave resonance approximation.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 99-01-01239
and 00-15-96069).
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